A FRONT PANEL

FOR THE S-100 BUS

Copyright 1979 by
©Ithaca InterSystems, Inc.
Introduction 1
Definitions 2
Initialization 2
Operation 3
Light Emitting Diodes 14
Switches 15
Jumpers 26
Test points 28
Circuit Description 30
Repair 41
Notes 45

1.0 DEETHTTIORS AND IMTRODUCTTON

The first section of this manual, DEFINTTIONS and INTRODUCTION, defines some of the tems used in the manual and gives an overview of the front panel functions.

The seeond section, INITTAL OPERATION and CHECK OUT, serves two purposes, first to check the condition of the circuitry and also as a programed course on how to use the front panel. The user will toggle in a simple program and use all of the difrerent functions to manipulate it. This section will not assume any technical knowledge.

The third section, LIGHT EMTTMIG DIODES, SWITCEES, JUMPERS, and TESTROINTS, serves as a reference manual for the board. It covers the function and the meanjing of each LED, switch, jumper, and testpoint with a self-contained paragraph. It is intended to provide both the beginning and the experienced user with a quick and easy way to locate information.

The fourth section, CIRCUIT DESCRIPTION, REPAIR, and the SCHEMATIC, assumes some technical ability. Tt describes how the front panel circuitry works and how the front panel is used to repair itself and the rest of the computer.

The Intersystems front panel was designed as a hardware development and diagnostic tool. Information is input and displayed in binary format to provide the user with the most immediate access to the computer circuitry. The basic functions of the front panel are to run, stop, and reset the processon; read. write and jump to any memory location; single step and slow step through a program; and stop or breakpoint the computer at an adress or data byte. In adition to its basic functions, the front panel can force the computer to execute a variety of simple repetitive instructions. This produces waveforms that are easy to display and understand on an oscilloscope or a logic analyzer. When runaing complex programs, the front panel produces a latched or unlatched trigger signal for observing single shot and low duty cyele events. The trigger can be characterized by a combination of adoress or data, status signals, control signals, and an external input.

Features of the front panel include its ability to run at 2 or 4 mH, , to perform block menory tests, to display and change the accumulator, and to aid in the quick, economical repair of complex computer circuitry. The
front panel's most important feature is its straight-forward and easy to understand circuit design.

DEETNITIONS

RUN Mode where the rront panel Run signal is active high, indicating that the Run/Stop flip flop is reset to Run.

WAIT STATE A machine state, one or more of which occurs between the T2 and $T 3$ states. Used to slow down the processor. At 2 mHz, ? wat state lasts for 500 nsec. At $4 \mathrm{mHz}_{\mathrm{H}} 1$ wait state lasts for 250 nsec.

STOP MODE Mode where the front panel requests an extremely large number of consecutive wait states.

LEDS Light Eroitting Diodes.
2.0 INITIAL OPERATION AND CHECK OUT

THTTIALIZATION

Before tuming power on for the first time, all switches and jumpers should be set as follows:

S0 - S15	All down
S16-521	All middle position
S22-S24	All middle position
S25	All positions open except close AD
S26	All positions open
\$27	D7, D6, D1, and D0 closed, D5, D4, D3, and D2 open
J1	Not used
J2	See jumper section
J3	See jumper section
J.4	$A-B$
J5	$A-B$
J6	See jumper section
JT	A - B
J8	Leave open
19	$B-C$
510	$A=B$
J11	B-C
J12	A-B
J13	Leave open

1) Install a menory board addressed to start at zero.
2) Turn the power on.
3) Reset the computer by raising $\$ 20$ to the Reset position. You should see all of the address LEDs, $A 0-A 15$ on. The status LEDS, LO - L7, should be off except for L6 (MEMR) and L5 (WO)

Note: Different processor boards may drive some of the LEDS differently. An Ithaca Audio $2-80$ Revision 1.3 was used for these instructions.
4) Return 520 to the middle position. All of the address leDs should go off. The LT (M1), L6 (MEMR), and L5 (WO) LEDs should be on. The pattern on the Data LEDs, Do - D7, displays the contents of the menory byte with an address of zero, all address LEDS off. No memory will appear as all Data LEDs on.
5) Raise several of the 50 - $\$ 15$ switches. Momentarily raise the S16 switch to the examine position. The A0 - A15 LEDs corresponding to the raised $50-\$ 15$ switches will go on The computer has just jumped to the binary address set in the so S15 switches and is presently examining the contents of the memory location on the AO - A15 LEDS. The Examine function will only work properly if the LT (M1) LED is on.
6) Momentarily raise the $\$ 20$ switch to the Reset position. The AO A15 address LEDs should return to all zero (off). Now, momentarily lower the S16 switoh to the Examine Next, EX NTA position. The AO LED should come on. Observe that as the switch is lowered repeatedly, the address leDs count up in binary fashion. The computer is incrementing its address and displaying on the DO - D7 data lEDs the contents of the memory location on the AO - A55 LEDS.
7) Reset the computer. Momentarily raise the 517 switch to the Deposit position. The pattern set on the So - 57 switches will appear on the DO - D7 data LEDs. The front panel has just deposited into the memory location on the AO - A15 LEDs the pattern on che $S 0$ - ST switches. The address does not change during a Deposit.
8) Momentarily lower the S17 switch to the Deposit Next, DEP NT, position. The pattern set on the $S 0$ - $S T$ switches will appear on the D0 -. D7 data LEDS and the address on the AO - A15 LEDs will be incremented. The computer has just deposited into the incremented memory location.
9) Enter the EF PORT TEST PROGRAM.

Address	Hex	Instruction Binary Pattern $M S B$	LSB	
0	0	0	DB	1101

This program inputs the positions of the $58-515$ switches into the processor accumulaton. It then latches the contents of the accumulator onto the FO - $F T$ programed output LEDs. It then junps back to the beginning of the program, looping endlessly.

To enter the program:
a) Reset the computer.
b) Enter the first instruction, $D B$, on the $S 0-S 7$ switches.
c) Raise S17 momentarily to the Deposit position.
d) Enter the second byte, FF, on the $S 0$ - ST switches.
e) Lower S17 momentarily to the Deposit Next position.
f) Enter each subsequent byte by repeating the operations in d and e.
10) Check to see if the program has been properly deposited into memory by:
a) Lower all 50 - $\$ 15$ switches.
b) Momentarily raise Si6 to the Examine position. All A0 - A15 address LEDs will be off and the first byte, $D B$, should be displayed on the DO - D7 data LEDs.
c) Momentarily lower 516 to the Examine Next position The next data byte should appear on the D0 - D7 data LEDs. The address at which the data byte is located is displayed on the A0 - A15 address LEDs.
d) Repeat step c_{2} checking the memaining bytes.

Run the PE PORT TEST PROGRAM
a) Return to zero address by lowering all so - Sif switches and monentarily raising S16 to the Examine position. You should again see $D B$.
b) Momentarily raise 321 to the Run position. The Run LED, L8, will go on and the bait LED, L9, will go off, unless wait states are being requested.
c) The pattern on the S8-S15 switches will now appear on the F0 - F7 programed output LEDs. Change the pattern on the S8-S15 switches and note that the F0 - F7 LEDs change with no appreciable delay.

Using T.P. B; monentarily ground T, P, B. The computer will stop, The Wait LED will go on.

Using TA. A. An momearily ground T. P. A. The computer will run, The Run LED will go on.

Single stepping the FF PORT TEST PROGRAM. The single step and slow step functions are only enabled when the computer is in stop mode.
a) Momentarily lower 521 to the Stop position.
b) Monentarily lower S18 to the Single Step position. The computer will execute one instruction and then return to the Stop mode.
c) By repeatedly lowering S18 to the Single Step position, you can single step thru the program loop many times. Change the 58 - S17 switches and note that the F0 - F7 programmed output hEDs are updated once per program loop.
15) Slow stepping the FF PORT TEST PROGRAM. With the computer still in stop mode, raise the 518 switch to the Slow Step position. The computer will continuously execute single step instructions. You can control the slow step repetition rate by adjusting the Rg
potentiometer. it may be necessary to renove the cover to obtain access to R9. R9 is located to the left of the Examine/Examine luext switch. Note that at slow repetition rates, there is an appreciable delay between changing a 58 - 515 switoh position and the corresponding chanee on the FO-FT programed output LED.

Using bxeakpoints with the FP PORT TEST PROGRAM.
a) Place the computer in Pun mode.
b) Lower all of the 50 - 515 switches.
c) Lower $\$ 19$ to the Address Breakpoint position. The computer will stop at the zero address. All of the A0 - A15 address LEDs will be ofi. The DB byte will be on the Do-D7 data LEDS. Both the Run LED, L8, and the kait LED, L9, will be on.
d) Momentarily ground $T . R_{\text {. }} H$; the computer will run while $T . P$. fif is grounded. When the ground is removed, the computer will again stop at the zero address.
e) Raise the $S 2$ switch. The computer will rum for an instant and stop at the new address on the 50 - 515 switches. The A2 address LED will be on and the C3 byte will appear on the D0 -. D7 data LEDs.
P) Raise the $S 8$ switch. The computer will not stop because the address on the $S O$ - Sis switches is not used by the FF PORT TEST PROGRAM.
g) Raise all of the $50-\$ 15$ switches. The computer will stop. All of the AO - A15 address LEDS will be on. Either the I4 Input LED or the L3 Output LED Will be on. The computer has stopped not on a program address but rather on the I/O port number, FE, which is placed on the upper and lower address bytes during an input or output instruction.
h) Raise $\$ 19$ to che Data Breakpoint position. If you are using an 8080 processor in your computer. close switch Wl in switch pack S 25 . This provides additional time for the Data Breakpoint function to occur.
i) Place the first byte of the FF PORT TEST PROGRAM on the SO S7 switches. The computer will stop when a comparison is made between the pattern on the $S 0-S 7$ switches and the Do - D7 data LEDs. In this case, the computer will stop at the zero address with $D B$ on the DO -. D7 data leDs. If this does
not occur, check to see if the memory board is jumpered to request wait states. Then add one more wait state than the number of wait states being requested by memory. For example, if memory is requesting 1 wait state, close the W2 switch in switch pack S25. Only one of the four following switches can be closed at any given time: 14, W2. W3. S.
3) Place the other bytes in the FF PORT. TEST PROGRAM on the SO - S7 switches. Note that those bytes that only occur once in the program always stop at the same memory location. Those bytes that occur twice stop at either location.
k) Place the same byte on both the $S 0-S 7$ and the $S 8-S 15$ Switches. The FF PORT TEST PROGRAM inputs the pattern on the S8 - S15 switches and outputs this byte to the F0-F7 programed output LEDs. Therefore the byte on the S8- S15 switches appears twice on the data bus, once during an input and once during an output cycle. The breakpoint occurs on either cycle.

1) Open AD in switch pack S 25 .
m) Repeat steps $a_{\text {, }} b$, and c. The computer will not stop because the $A D$ switch is open.
n) Connect an oscilloscope to T.P. E. With an Ithaca Audio Z80 CPU board you should see 1 , insec negative going pulses every 16 Msec at 2 mHz operation and 0.5 A sec negative going pulses at 4 mHz operation. These times assume that no wait states are being used. You should also see much fainter negative going pulses. These are due to the address comparator sensing the refresh address output by the $Z 80$ processor.
2) Close the BS switch in switch pack 525 . The negative going pulses will become shorter; 200 nsec at 2 mft and 150 nsec at 4 mHz . The faint pulses due to the refresh operation will disappear. If you have a logic analyzer or a triggered oscilloscope you can use this signal as a trigger. The BS switch has eliminated false triggers.
p) Observe the T.P. E. signal for different data and address breakpoints. Observe the effect of opening and closing the BS suitch.
q) Open BS and close AD in switch pack S25.

Characterizing breakpoints with the S22, S23 and S24 switches.

These switches enable the data and address breakpoints. They enable all breakpoints in the center position.
a) Continue to mun the FF POPT TEST PROGRAM.
b) Set the switches for an adress breakpoint at address zero. The computer will stop while inputting the first instruction, DB. The status LEDS show that the computer is in an instruction fetch wait state with the M1, MEMR, and 10 LEDS on. If the $S 22,523$, or 524 switches are set to any of the positions that do not characterize the address on the so - S15 switches, then a breakpoint will not occur. In this case, selecting the ITA, HDA, OUT, INP, or M positions prevents the address breakpoint.
c) Set the switches for a data breakpoint with the same byte on both che S0 - ST and S 8 - S 15 switches. The breakpoint will occur either during an input or output cycle. Set 523 to the OUT position. The computer will stop with the $L 3$ OUT LED on. Now set 523 to the INP position. The computer will stop with the L 4 INP LED on.
18) Status Breakpoint.

The W1, W2, and W3 switches in switch pack $\$ 25$ must be open before closing the Status Breakpoint switch S in switch pack S25.
a) Continue to run the $E F$ PORT TEST PROGRAMA.
b) Close switch S in $S 25$. A status breakpoint will now ocour regardiess of the position of S 19 . If S 22 , S 23 , and S 24 are all in the center position, the computer will stop at any location.
c) Set S 22 to the $M 1$ position. The computer will stop on any M instruction.
d) Set $S 22$ to the $\overline{M 1}$ position. The computer will now stop on a non-Mt cycle.
e) Return S 22 to the center position and set S 23 to the 0ut position. The computer will stop during an output cycle regardiess of the positions of the $S 0$ - S15 switches.
i) Set 522 to the INP position. The computer will stop during an input eycle regardiess of the positions of the so - S15 switches.
e) Peturn 522 to the center position. The computer will stop. Now set 523 to the ITA or HDA positions. In either case the computer will run because interrupts and DMA, direct memory access, are not used in the FE PORT TEST PROGRAM.
n) Return 523 to the center position. Open switch S and close one of the wait request switches if you found it necessary berore.

Latched Breakpoint.
a) Open the $A D$ switch and close the L switch in switch pack S25.
b) Continue the EF PORT TEST PROGRAM,
c) Lower all of the $\mathrm{SO}-\mathrm{S} 15$ switches.
d) Lower 519 to the Address Breakpoint position. The computer will stop at address 0001 H . Note that the computer has stopped on the cycle after the cycle that triggered the breakpoint. This delay is characteristic of the latohed breakpoint because the breakpoint signal occurs too late in the triggering cycle to meet set up times to stop the processor in the current oycle.

Hote also that when the breakpoint occurs the T4 LED goes on. The breakpoint latch can be reset by closing pushbutton S28. The T4 LED will go off and the computer will run until the pushbutton is released and another breakpoint occurs.

The T4 LED will go on during any breakpoint and will stay on until the 528 pushbutton is closed. Closing $\$ 28$ will cause the computer to leave the breakpoint only in the latched breakpoint mode.
e) Raise S19 to the Data Breakpoint position.
i) Examine location 0 .
g) Reset the breakpoint latch by closing the S 28 pushbutton.
b) Raise the Run switch (S21). The computer will stop with 0005 on the address bus and 00 on the data bus. The T4 LED will go on. Closing the 528 pushbutton will cause the
computer to run the program until the switch is released. The computer will stop at the same location. Note that the computer stops on the cycle after the cycle that triggered the breakpoint.
i) Close the $A D$ switch and open the L switoh in switch pack S25. Return the Si9 breakpoint switch to the middle position.

Continuous NOP.
Stop the computer, Close switch CN in switch pack S26. LED T1 will go on. The computer will continuously execute NOP instructions. The address output by the processor will count up in binary. The A15 and A14 address LEDS will ficker visibly. With an oscilloscope, you can observe that each address is twice as long as the previous address signal. Also observe the RSYNC signal, line 76 , and the DBIN signal, line 78. Open switch CN .

Contimuous Deposit.
Close switch CD in switch pack 526 . The byte on the $50-57$ switches will appear on the DO - DT data LEDs. The computer will remain stopped. The front panel is continuously depositing the byte on the SO - S7 switches into the address on the AO - A15 iEDs. With an oscilloscope, observe the Memory Write, MHRITE, pulses on $S-100$ line 68. The T2 LED will go on when the CD switch is closed.

Continuous Examine.

a) Close switch CF in switch pack 526 . The $T 3$ LED will go on.
b) Raise $S 16$ to the Examine position. The address LEDs, AO A15, will assume the same pattern as the $50-S 15$ switches.
c) Continue to hoid S16 in the Examine position. Change some of the $S 0$ - 515 switches. Note that the corresponding address LEDs, AO - A15, also change Normally, raising $\$ 16$ causes one Examine sequence. With $C F$ closed, raising $\$ 16$ causes the Examine sequence to occur approximately 1000 times per second.

With an oscilloscope, you will see the following waveforms:

The intensity of the oscilloscope will have to be turned up because of the high beam writing speed and the low repetition rate. Adjusting R9 will vary the repetition rate somewat and will increase the intensity. at a slomer beam writing speed the display would look like this:

The timing of any 1,2 , or 3 cycle instruction can be displayed as the C3H jump instruction was displayed in step c. Open all of the switches in switch pack 527 .

Place the DB. Input, instruction on the $50-57$ switches (1101 1011).

Place the EF byte on the 58 - $\$ 15$ switches (all up).
Raise Si6 to the Examine position with the $C F$ switch closed. The INP, L4, and $\overline{W O}$, LS LEDS will go on indicating that an input instruction is occurring. All of the AO - A15 address LEDS will be on, indicating that the FF port is being read.

If you change any of the $58-515$ switches, the corresponding LEDs in both the upper and the lower address bytes will change. This is because the processor is outputting the port number twice on both high and low address bytes. The $S 8$ - S15 switches are in this case interpreted as the port number. Return switches to their original state.

Continuous Examine Next.

Lower S16 to the Examine Next position with the CF switch closed. The addess bus will begin counting up at approxinately a 1 kHz rate. The computer is executing a NOP instruction once every 1 msec.

Coninuous Deposit Next - Data Breakpoint.
a) Reset the computer.
b) Lower all of the $50-\$ 8$ switches.
c) Ciose the CF switch.
d) Raise S17 to the Deposit position. The front panel wili perform a nomal deposit. The DO m DT data LEDs will go out.
e) Lower S17 to the Deposit Next position. The address LEDS will start to count upwards. The data LeDs will all stay off.
f) After about 10 seconds, return $\$ 17$ to its center-off position. The front panel will have mricten into a contiguous block of aexory the pattern on the so - 57 switches. The highest address of that block will be displayed on the address LEDs.
g) Open the Ce switch in switch pack S26.
h) Examine a memory location in the contiguous block. Set all of the 50 - Sis switches low except for S 8 and momentarily raise 516 , the Examine switch.
i) Deposit into the memory location 0100H all ones. Raise So thru 58 and then momentarily raise the Deposit switch.
j) Return to the zero address by lowering so - S15 and momentarily raising Si6 to the Examine position.
k) Raise S19 to the Data Breakpoint position.

1) Open $A D$ and close \bar{D} in switch pack $\$ 25$. Check to see that S22, S23, and 524 are in their center-ofs positions.
m) Raise the Run switch, S21. The computer will run for an instant and ther stop at the address into which you deposited the FF byte. The Run and Wait LEDs will be on. This method can be used to find simple faults in menory
boards. It will not detect faults in address lines on a memory boand. Use an oscilloscope and the Continuous NOP function for testing address lines.
n) Repeat steps c through m for different data test patterns. The bytes $00, A A_{\text {, }}$ and 55 will work because they are interpreted as instructions that do not alter memory or cause the computer to branch to an address. The byte Fr will not work.

Displaying the Accumulatox.

a) Set S 27 to:

| $D T$ | | DO |
| :--- | :--- | :--- |\quad| O Open |
| :--- | :--- | :--- | :--- |
| C C O C O O C C |

b) Raise So through S 7 , the S 8 - S 15 switches don t matter.
c) Monentarily raise the Examine switch; the contents of the accumulator will be displayed on the programmed output LEDS F0-F7.
The Examine function has been redefined to execute:

```
D3. FF (OUT FF)
```

The contents of the accumulator are not changed by this operation. The address is incremented by 3. If you are stopped in the middle of a program and want to continue the program, then you will have to reset 527 to $\mathrm{C} C 000 \mathrm{C} C$. You can then use the Examine funotion to jump back to the original address.
26) Changing the contents of the accumulator.
a) Set S27to:

| D7 | | DO | O Open |
| :--- | :--- | :--- | :--- | :--- |
| C C O C C O C C | | C $=$ Closed | |

b) Raise So through 57 .
c) Place the byte that you wish to deposit into the accumulator on the S8 - S15 switches.
d) Momentarily raise the Examine switch; the so - S15 byte will be loaded into the accumulator.

The Examine function has been redefined to execute:

$$
D B, E F \quad(I N F F)
$$

If you are stopped in the middle of a program and want to continue the progran, then you will have to reset S 27 to $\mathrm{C} C O 000 \mathrm{CO}$ O You can then use the Examine function to jump to the original address.

REFERENCE SECTION
4.2 LIGHT EMITTING DIODES

```
4.2.1 A0 - A15 LEDs - displays the 16 address bits on the S-100 bus.
    4.2.2 DO - DT LEDs - displays the 8 data bits on the processor
        bidirectional data bus. These signals are routed to the front
        panel by a ribbon cable from the processor board instead of
        thru the S-100 bus.
    4.2.3 L0 - L7 LEDS - displays the following S-100 bus status
        signals:
            LO SHALTA HALT ACKMOWLEDGE
            L1 SINTA INTERRUPT ACKNOMLEDGE
            L2 Jumper selectable for SSTACK or INT
            L3 SOUT OUTPUT CYCLE
            L4 SINP INPUT CYCLE
            L5 SWO WRITE OR OUTPUT CYCLE
            L6 SMEMP MEMORY READ CYCLE
            L7 SM? IHSTRUCTION FETCH CYCLE
    4.2.4 FO - FT LEDS - displays the contents of a register which
        stores the data byte output by the processor during an OUT FF
        instruction.
    4.2.5 L8 LED - RUN - indicates the state of the front panel Run
        signal.
```

```
4.2.6 L9 LED - WATT - processor wait acknowledge.
4.2.7 L10 LED - PHLDA - HOLD ACKNONLEDGE - processor DMA
acknowledge.
4.2.8 L11 LED - Jumper selectable for PINTE or PHANTOM.
4.3.0 The T1 - T4 LEDs can't be seen with the front panel cover in
    place.
4.3.1 T1 LED - indicates that the Continuous NOP function is on.
4.3.2 T2 LED - indicates that the Continuous Deposit function is on.
4.3.3 T3 LED - indicates that the Continuous Functions function is
enabled.
4.3.4 T4 LED - indicates that the latch circuit has been triggered.
```

4. 4 SWITCHES
4.4.1 Power Switch: Keyswitch under the Intersystems logon
4.4.2 SO - 57 : The $50-57$ switches have four functions:
1) During a Deposit, Deposit Next, or Continuous Deposit, SO S7 detemine the data byte written into memory.
2) During a Data Breakpoint the byte on the bidirectional data bus is compared to the $S 0-S 7$ positions.
3) During an Address Breakpoint the low order byte on the $S-100$ address bus (A0 - A7) is compared to the $S 0-57$ positions.
4) During an Examine or Continuous Examine, So - ST determine the second byte on the bidirectional data bus which may be input by the processor. During a C3 jump sequence, this byte is interpreted by the processor as the low order address byte.

S8 - S15: The S8 - S15 switches have three functions:

1) When the processor executes an IN $F F$ instruction, the positions of the $S 8$ - 515 switches are decoded as the $F F H$ snput pont.
2) During an Address Breakpoint the high order byte on the S-100 address bus (A8 - A15) is compared to the S8 - S15 positions.
3) During an Examine or Contimuous Examine, S8-S15 determine the third byte on the bidirectional data bus which may be input by the processon. During a C3 jump sequence, this byte is interpreted by the processor as the high order address byte.

S16: Examine/Examine Next.

S16 is disabled in Run mode. When the $\$ 16$ toggle is raised the front panel causes the processor to execute three machine cycles. During the first cycle the byte on 527 is input to the processor if it is inputting data. During the second cyole the byte on So - S 7 is input if the processon is inputting data. During the third cycle the byte on $S 8-515$ is input if the processon is inputting data.

In nommai use, the C3H jump instruction is input on 527 , so -57 is then interpreted as the low jump address and $58-515$ is interpreted as the high jump address. In this case, raising $S 16$ to the Examine position causes the processor to jump to the address on the SO - S15 switches. The processor is then placed in stop mode while executing an instruction fetch and the memory board that is addressed by the new jump address outputs a data byte that is displayed on the data LEDs Do - D7.

If the S 16 switch is raised while the Continuous Function switch, CE , in 526 is on, the three cycle sequence is repeated approximately every 1 msec.

When the 516 toggle is lowered to the Examine Next position, the front panel circuitry causes the processor to execute one Nop instruction. This increments the address without executing program instructions.

If the S 16 switch is lowered while the Continuous Function switch, $C E$, in $S 26$ is on, the 102 instruction is repeated approximately every 1 mseo.

S17: Deposit/Deposit Next.

S17 is disabled in Run mode. When $S 17$ is raised to the Deposit position the data byte on the $50-S 7$ switches is deposited into the menory location on the A0 - A15 address LEDS.

When S 17 is lowered to the Deposit Next position an Examine Next function is first executed and then a Deposit is made into the incremented address.

If S 17 is lowered while the Continuous Function switch is on, the data byte on $S 0$ - $S 7$ is deposited into successive memory locations approximately every 1 msec.

S18: Slow Step/Single Step.

S18 is disabled in Run mode. When 518 is lowered to the Single Step position, the front panel circuitry causes the processor to execute one cycle. The processor executes instructions out of memory.

When S 18 is raised to the Slow Step position, the Single Step function is executed at a rate of approximately $1 / 5 \mathrm{~Hz}$ to 1 kFz . The rate is set by potentiometer Rg.

S19: Data Breakpoint/Address Breakpoint.

When S 19 is raised to the Data Breakpoint position, a deta breakpoint signal is generated if the following conditions are met:

1) A comparison is made between the $S 0$ - $S 7$ switches and the bidirectional data bus.
2) The status conditions set by switches $\mathrm{S} 22, \mathrm{~S} 23$ and S 24 are met.
3) The external input on pin k of the test point header is at a high ThL logic level. this input is nomally held high by a puld-up resistor.
4) If switch $B S$ in switch pack 525 is closed, then the bus stable signaj. BS must be high.

The Data Breakpoint signal is output on pin E of the test point header. It can be used to trigger an oscilloscope or logic analyzer. If switch AD in switch pack $S 25$ is closed, then the Data Breakpoint signal will stop the processor.

The wait state request signal output by the front panel, $\overline{X R D Y}$, must meet the timing requirements of the processor and memory used in the computer. An 8080 processor coes not output stable data until it is too late to make a comparison and stop the computer in the current cycle. In order to make a data breakpoint with the 8080 , a wait state generator cirouit is used to request one wait state during every oycle that meets the status input conditions. If a data match is not made, the processor continues to execute its progran after being slowed by the wat state Slow memory may require nore wait states. Dne, two, or three wait states can be requested by closing wh, wh or W3 in switoh pack 525 . If a data match is made, then the momentary wait state(s) provide enough time for the breakpoint wait request to successfuljy request a stop. It is not necessary to slow a $z 80$ processor with the wait state generator because the $Z 80$ outputs data earlier in its cyole than the 8080 . Note: only one of four of the following switches in switch pack 525 can be closed at the same time: 1W, 2W, 3W, S.

When $S 19$ is lowered to the Address Breakpoint position, an address breakpoint signal is generated if the following conditions are met:

1) A comparison is made between the $\mathrm{SO}-\mathrm{S} 15$ switches and the S-100 address bus.
2) The status conditions set by switches 522 , 523 , and 524 are met.
3) The external input on pin H of the test point header is at a high TTL logio level. This input is normally held high by a pulimup resistor.
4) If switch BS in switch pack $S 25$ is closed, then the bus stable signal, $B S_{2}$ must be high.

The Address Breakpoint signal is output on pin E of the test point header. It can be used to trigger an oscilloscope or logic analyzer. If switch $A D$ in switch pack $S 25$ is closed, then the Data Breakpofnt signal will stop the processor.

S20: Reset/External Clear.

Reset	When s20 is raised to the Reset position, a
	Reset and an External Clear signal is
	generated. These signals are not debounced. A
Reset will cause the front panel circuitry to	
	stop the processor.

4.5.6 S21: Run/Stop.

Run When 521 is raised to the Run position, the processor will run if no other device in the system is requesting a stop and if the following front panel breakpoint functions are not requesting a stop:

$$
\begin{array}{ll}
\text { Latched Breakpoint, } & \text { S25 L } \\
\text { Status Breakpoint, } & \text { S25 S } \\
\text { Address-Data Breakpoint } & \mathrm{S} 25 \mathrm{~A} \mathrm{D} \\
\text { Data Breakpoint } & \text { S25 } \overline{\mathrm{D}}
\end{array}
$$

Stop When 521 is lowered to the Stop position, a Stop mode is requested during the first instruction fetch to occur. The processor will stop while it is in the process of inputting the next instruction to be executed and that instruction will be displayed on the DO-D7 LEDs.

S22: $\overline{M 1}-$ Don $^{2} t$ Care - M1.

S22 is a three position switch which enables the four types of breakpoint: Latched, Status, Address - Data, and Data.

In the \bar{M} position the breakpoints are enabled when the $S-100$ status line, M1, is at a logic low.

In the M1 position the breakpoints are enabled when the $S-100$ status line, M, is at a logic high.

In the center Don? Care position the breakpoints are always enabled.

S23: OUT - Don't Care - INP.

S23 is a three postition switch which enables the four types of breakpoints: Latched, Status, Address - Data, and Data.

In the out position the breakpoints are enabled when the $S-100$ status line, SOUT, is at a logic high (output instruction).

In the INP position the breakpoints are enabled when the $S-100$ status Iine, SINP, is at a logic high (input instruction).

In the center Don ${ }^{\text {t }}$ Care position the breakpoints are always enabled.
S24: ITA - Don't Care - HDA.

S24 is a three position switch which enables the four types of breakpoints: Latched, Status, Address - Data and Data.

In the ITA position the breakpoints are erabled when the $S-100$ status line, TNTA, is at a logic high (Interrupt Acknowledge signal).

In the HDA position the breakpoints are enabled when the S-100 HHDA signal is at a logic high (DMA Acknomledge).

In the center Don't Care position the breakpoints are always enabled.

S25 is an octal switch pack. Only one of W1, W2, W3, or S can be elosed at a time.

S25: M, W2, W3
These switches request $1,2,3$ wait states respectively when they are closed and enabled by the rollowing conditions:

1) S19 is raised to the Data Breakpoint position.
2) The status conditions set by switches $S 22, S 23$, and $\$ 24$ are met.
3) The external input on pin H of the testpoint header is at a high Til level. This input is nomally held high by a pull-up resistor.

The S and $B S$ switches in 525 should not be closed if the $W 1$, W2 and W3 switches are to function nomally. These wait states are needed during a Data Breakpoint in order to slow the processor until a decision is made whether to stop the computer. 8080 processors require 1 wait state. Slow memory requines one more wait state than the board is itself requesting in order to provide reliable data breakpoints.

S25: S

When the Status, S_{2} switch is closed, the breakpoint enable signal is used to stop the computer. Since the address and data comparators will not go active unless this signal is already active, the address and data breakpoints are superceded by the status breakpoint. For example, with 523 set to the INP position and switch S closed, the computer will stop during any input instruction instead of when the computer is inputting a byte specified by switches 50 - 57 .

Because the data breakpoint is not used when S is closed, the $W 1$, W2, W3 switches in 525 are not needed and should be left open. If W1, w2, or $W 3$ is closed while S is closed, a cirouit conflict will develop.

When the BS switch is closed the Bus Stable signal is used to characterize the breakpoint enable signal. The BS signal is active bigh, indicating that the data and address buses are stable and valid. Jumpers J2, J3 and $J 6$ must be set properly in order to produce the correct BS signal. The BS switch should only be closed when the breakpoint signal on testpoint header pin E is being used to trigger an oscilloscope or logic analyzer. The BS signal prevents the data and address comparators from producing false triggers when the buses contain invalid information. Do not close the BS switch while trying to stop the computer using a breakpoint. The breakpoint signal when enabled by BS does not occur early enough to stop the processor.

S25: 1

When the Latched, L, switch is closed, the computer can be stopped by a latched breakpoint signal. The latch is triggered if the breakpoint signal is active low at the beginning (rising edge) of the Bus Stable signal. When the latch is triggered the T4 LED goes on. The latch is reset by closing S28.

The latched breakpoint occurs too late to stop the computer in the current cycle so the computer stops in the next cycle.

The latched breakpoint serves as a visual indication of the occurence of a breakpoint signal. It can stop the computer if the breakpoint event occurs too late in the cycle to stop the computer with an address, data or status breakpoint. It also outputs the latched breakpoint signal on testpoint header pin F_{n}

S25: AD

When the $A D$ switch is closed, the address or data breakpoint signal can stop the computer. The data breakpoint signal is selected by raising $\$ 19$ to the DATA position. The address breakpoint signal is selected by lowering S19 to the ADDR position.

When the \bar{D} switch is closed the Data Breakpoint can stop the computer if the data comparator does $1 \mathbb{N O T}$ sense a match between the $50-57$ switches and the bidirectional data bus. Switches S22, S23, S24 should be set to their center-off positions, the S switch in switch pack 525 should be open, and testpoint header pin H should be left disconnected or held high so that the breakpoint enabie signal will always be actiwe low. The io, S, and $A D$ switches in switch pack $S 25$ should be open so that only the \bar{D} breakpoint can occur. If an 8080 processor is being used, the 1 switch should be closed and S19 should be raised to the Data position.

The Data Breakpoint is normally used in conjunction with the Continuous Deposit Next function. First, a pattern is written into a block of menory. Then, with the front panel in the Data Breakpoint mode and the computer stopped at the beginning of the block, $S 21$ is raised to the Run position. The computer interprets the pattern as a progran and reads each menory location in the block. It stops when it reads a pattern that is not the same as the $S 0$ - $S 7$ switches. The mismatched pattern and its address will be displayed on the Data and Address LEDs. Only use patterns or instructions that do not alter memory or cause the program to branch away from the next address.

For example, the following patterns are acceptable because they only change internal registers of the processor and increment the program counter.

MSB	LSB								
0	0	0	0	0	0	0	0		
0	1	0	1	0	1	0	1	HOP	
1	0	1	0	1	0	1	0		XROV D, L

This type of memory test cannot replace the exhaustive software based memory tests availabie for debugging and qualifying memory boards. It does, however, provide a very straight forwand method for repairing simple memory chip failures.

FRONT PANEL

S26: CN

When the Continuous NOP, CN, switch is closed, the processor is forced by the front panel to execute the NOP instruction continuously at full processor speed. The TY LED goes on to indicate that the CN switch is olosed. No operation is performed during a Mop instruction except for inorementing the address. The processor essentially becomes a 16 bit counter. This is very useful for testing for continuity and shorts in address lines. Starting at address line $A 0$, each subsequent adress line hes twice the period of the previous address line.

The CN function forces the computer to operate in a simple repetitive mode that is easy to undersicand and observe on an oscilloscope and logic analyzer. The timing relationships between the clocks, PSYNC, Mî, and DBIN are very easy to display.

S26: CD

When the Continuous Deposit, $C D$, switch is closed, the front panel circuitry produces MVRITE pulses at approximately a 1 kHz rate. The processor remains in a wait state and therefone the address does not change.

This function is nomaly used for testing the cirouitry on memory boards.

S25: CF

When the Continuous Function switch,
CF, is closed, the Examine, Examine Next and Deposit Next functions are modified so that instead of being onemshot events, they occur at a repetition rate of approximately 1 kHz . Thus, the timing of these functions can be displayed on a regular oscilloscope instead of a storage oscilloscope or logio analyzer.

The Continuous Examine and the Continuous Examine Next are nommaliy used for self-diagnosis of the front panel circuitry. The Continuous Deposit Next is used to write the pattern on switches S0 - S7 into a block of memory. Úsing

the Data Breakpoint function, \bar{D} in 525 , a simple memory test can be performed.

527

S27 is an octal DIP switch. The positions of the elght switches determine the first byte to be input to the processor during an Examine or Examine Continuous sequence. A closed switch represents a one. An open switch represents a zero. D7 represents the most significant bit, Do the least significant bit.

In nomal use, $D 0, D 1, D 6$ and $D 7$ are closed and $D 2, D 3, D 4$, and $D 5$ are open. This pattern represents a c3f jump instruction and is interpreted as such if the processor is executing an instruction fetch cycle when the $C 3$ byte is input. With normal jumpering on $j 11$, the Examine and Examine Continuous functions cause three machine cycles to occur. If the processor is inputting data during any of these cycles; $527,50-57$ and $58-515$ input respectively, the first, second and third byte. The processor is in a wait state between these cycles. The number of cycles can be modified by Jll so that only one or only nonminstruction fetch second or third eycles occur.

The Examine function is a single shot event. Its timing is difficult to display without a storage oscilloscope or a iogic analyzer. Its main purpose is the 03 jump sequence which allows the user to examine the contents of any memory location. The Continuous Examine function is useful because while the processor is executing the 1, 2, or 3 cycle sequence, circuitry anywere in the computer can produce simple repetitive waveforms that ane easy to display and understand. To produce a stable display, the processor must start each sequence with the same status conditions, otherwise the processor would interpret the data bytes differently on different passes. For example, 46, 70, 46 will be executed as:

The processor is stopped for approximately 1 msec between each three cycle sequence. The oscilloscope whit trigger at the start of each sequence and two different waveforms will be superimposed on the display.

FRONT PANEL

328：

The 528 pushbutton resets the breakpoint latch．The T4 LED will go off when 528 is closed．If $T 4$ goes back on，the breakpoint signal is still present．

JUMPERS

Note：the front panel $P C$ boards are delivered mith shorting straps aoross some jumpers．All of these straps are on the solder side of the board and should be cut if the jumpering is changed．

J1：J1 J1 is a 20 pin socket area for mounting a 74LS244．This octal driver can supply more curent for the FF port LEDs than the 74 L 273 register．The 74 LS 244 is nonmally not needed．To install，first cut the eight shorting jumpers under jl．

2． 33,56 ：The 32,33 and 36 jumpers are used to define the Bus Stable signal． The Bus Stable signal is used to indicate when the Data and Address Buses contain valid frofomation．The jumpers are set to accommodate the timing of different CPU boards．Set the junpers as follows：

Ithaca Audio 8080
280－1010

$J 2$	$A-B$		
$J 3$	$B-C$		
$A-B$		\quad	$A-B$
:---			
$A-B$			
$B-C$			

Fon a more detafled explanation of the Bus Stable signal；see the Circuit Description section of this manual．

34：J4 selects altemate signals ron the i9 Watt LED．
A－B The L9 Wait EED turns on to indicate that S－100 Iine \＃27， WAIT，is high．
$B-C$ The L9 Wait LED turns on to indicate that either of $S-100$ lines \＃3 or $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 27 is low．

35: J5 provides for combining the $\overline{\text { Single Step signal, } \overline{S S}, \text { on S-100 line }}$ \#21, and the $\overline{S t a t u s}$ Word Disable signal, $\overline{S S W} \overline{\mathrm{DSB}}$, on $\mathrm{S}-100$ line \#53.
$A-B \quad S S$ and $S S W$ DSB are not combined.
A. - C SS and SSW DSB are combined.

J6: See J2.

57: J7 selects alternate signals for the L2 LED.
 is low.
 Error or STACK, is high.

38: When closed, the $j 8$ junper bypasses the breakpoint cicuitry. u5 must be removed when 38 is closed. With $J 8$ closed, the following switches will be non-functional: $S 19, S 22, S 23, S 24, S 25, L, S, A D, \bar{D}, 1 W, 2 W$, 3W, BS and S28.

With $j 8$ closed the above switches and the following components can be mitted from the board: U5, U10, U13, U14, U19, U22, and T4.

39: J9 selects alternate signals for the L11 LED.
$A-B$ The 111 LED turns on to indicate that $\mathrm{S}-100$ line $\# 28$, INTE, is high.
$B-C$ The L11 LED turns on to indicate that $3-100$ line $\# 67$, PHANTOM, is high.

J10: The J10 jumper provides an alternate method for performing an Examine. Instead of executing a $C 3$ jump instruction, the processor executes NOPS up to the address on the SO - $\$ 15$ switches.

```
        C3 jump J10:A - B
        311: B-C
        S27: C3 pattern
        mof jump J10: B -- C
            J11: B - D
        S22, S23, S24: Center position
        S25, BS: Open
        Testpoint header pin H: Open or High
        S26, CF: May need to be closed.
        S27: All open.
    J12: J12 provides altermate definitions of the Sense Switch Disable, \overline{SW}
    DSB, signal.
        A - B \overline{SN}\overline{DSB}=SINP.Addr
        B-C \overline{SW}\overline{DSB}=SINP.Addr.DBIR
    The second definition provides a shorter pulse width and has
    traditionally been used in front panels. However, this allows
    transitory bus conflicts to ocour. The first method has been selected
    with nommal jumpering.
313: J13 is a 14 pin socket area for mounting a 74LS04, \(74 C 04\) or \(74 L 04\) hex inverter. The inverter IC is used to add time delay to signals that drive the bidirectional data bus and to the front panel deposit pulse. The IC is nomally not needed. To install it, first cut the jumpers between pin pajrs \(1 \& 2,3 \& 4,5 \& 5,8 \& 9,10 \& 11,12 \& 13\) on the solder side of the board.
```

TEST POINTS

Eight testpoints are gathered at the Test Point Header, located under S25. Either individual test point pins or a socket for a ribbon cable can be used in the header.
T.P.A T.P.A is normally held high by a pull-up resistor. Grounding T.P. A will reset the Run/Stop flip flop to the Run state if the flip flop is not being set to the Stop state by the POWER $\overline{O N} \overline{C L E A R}, \overline{P O C}$, signal, by T.P. B or by lowering the $S 19$ Run/Stop toggle switch.
T.P. B T.P. B is nomally held high by a pull-up resistor. Grounding T. P. B will set the Run/Stop flip flop to the Stop staten If the processor is running, a negative pulse on this line will stop it until the flip flop is reset.
T.P. D T.P. C is connected to the input of a 74 L 240 inverter. $T . P_{n}$ D is connected to the output of the same inverter. The input is normally held high by a pull-up resistor. This inverter is used to change the polarity of external inputs to the other test points. If T.P. C is left open, T.P. D can be used as a ground signal for the other test points.
T.P. E The address or data breakpoint signal is output on T. P. E. The data breakpoint signal is selected by raising $S 19$ to the Data position. The address breakpoint signal is selected by lowering S19 to the ADDR position. Refer to the section on the S19 switch for more information on the breakpoint signals.
T.P. F T.P. F indicates the state of the breakpoint latch. T.P. F will go high when a breakpoint occurs.
T. P. G The Bus Stable, BS, signal is output on T. P. G. See S25: BS and in the jumper section $\mathrm{J} 2, \mathrm{~J} 3, \mathrm{~J} 6$.
T.P. H T.P. H is nomally held high by a pull-up resistor. the data and address breakpoint signal is disabled when T. P. H is low.

There are 15 additional test points that are located over the gold edge connectors. These test points are directly connected to the following S-100 bus signals:

T．P．	Name	Use
SSW DSB	Sense Switch Disable	Disables CPU input data drivers
XRDY	External Ready	Stops the processor when low
MWR	Memory mrite	Memory Write strobe
SS	Single Step	Disables CPU input data drivens
PRDY	Processor Ready	Stops the processor when low
02	02	2 or 4 mHz clock signal
01	01	2 or 4 mHz clock signal
PSYNC	PSYNC	Indicates start of cycle
$\overline{\mathrm{PWR}}$	Pracessor Write	Processor Write strobe
DBIM	Data Bus In	Indicates proc．inputting data
M1	M1	Instruction fetch status signal
SOUT	SOUT	Output status
SINP	SINP	Input status
CLK	Clock	2 mHz clock
$\overline{\mathrm{POC}}$	Power on clear	

CIRCUIT DESCRIPTION

The front panel controls the computer with five $\mathrm{S}-100$ signals and a riboon cable that goes directiy to the CPU board．The five $\mathrm{S}-100$ signals are：

1）External Ready，$\overline{X R D Y}-S-100$ line $;$ ， 3 ，active low．$\overline{X R D Y}$ is used to request a wait state．
 is used to disable the CPU board＇s data faput drivers so that the front panel circuitry can drive the processor＂s bidirectional data bus thru the ribbon cable．$\overline{S S}$ is disabled in the Run mode．
 collector．$\overline{S S W} \overline{D S B}$ is used to disable the CPU boardis data input drivers so that the front panel circuitry can enter the Programed Input byte into the processor＇s bidirectional data bus thru the ribbon cable．The Programmed Input byte is determined by the positions of the 58 －S15 switches during the execution of an IN $F F$ instruction．$\overline{S S h} \overline{D S B}$ is not disabled in Run or Stop node．

4）Memory Write，MuRTTE－S－100 line $⿰ ⿰ 三 丨 ⿰ 丨 三 68$ ，active high．MWRIE is used as the write strobe signal to memory and memory－mapped boards．The fromt panel drives the Mhrite signal high during Deposit，Deposit Next and Continuous Deposit functions．These functions are disabled in Run mode．The front panel will also produce a pivRISE strobe if the processor outputs a processor Write，$\overline{P W R}$ ，strobe on $S-100$ line $F^{\prime \prime} 77$ and the SOUT status，line

```
##45, is low.
```

5) Run - S -100 line $\ddagger 71$, active high in Run mode. Run is used to indicate the state of front panel Run/Stop flip flop.
$\overline{S S}$ and $\overline{S S W} \overline{D S B}$ are both used to disable the CPU board's input data driver. Their finctions are redundant and are used only by the CPU board. Three options are provided for routing these signals to the CPU board:

Separate signals on S-100 lines 非21 and 非53.
Combine on either lines $\# 21$ or 753 using jumper $J 5$.
Combine and route over the ribbon cable, not using the $s-100$ bus at all.

The ribbon cable carries the following connections from a 20 pin header.
Pins 1-8 The processoris bidirectional data bus. LSB on pin 1 .
Pin 12 The $\overline{\text { Single }} \overline{\text { Step }}$ signal. The $\overline{S S V} \overline{D S B}$ signai can also be routed over pin 9 by jumper $J 5$.

Pin 10 The Reset signal which is normally output on S-100 line f15.
Pin 11 Ground.

Existing processors use 16 conductor ribbon cables. 16 conductor cables are connected to pins 1-8 and 13-20 of the header.

The block diagram illustrates the basic front panel circuitry. The breakpoint eircuitry drives XRDY low thru 35 and 026 when the breakpoint conditions are met, thus stopping the computer. The control logic block can drive XRDY high, causing the processor to rum, even through 05 is requesting that the processor stop. The Examine. Examine Next, Deposit, Deposit Next, Slngle and slow step functions are produced by a conbination of the control logic stamting and stopping the processor and luposing data on the bidirectional data bus at the appropriate times. When the font panel is driving the bidirectional data bus, the CPU board"s data drivers, which also drive the same bus, are disabled by the $\bar{S} S$ signal. The control logio drives the MWRITE signal high during the Deposit and Deposit liext functions.

The following section of the manual discusses the front panel functions in Ereater detail. The shorthand notation, 030 ph>0 is used instead of the description, IC 430 pin 4 goes from a logio state or one to a logic state of zero. To clarify the operation of the front panel functions, the sequence of events during each function is broken into numbered blocks. Each block contains those events that occur within a few gate delays of one another. Events that are separated in time by a clock period or a onemsot period are in different blocks. The blocks are numbered chronologically.

Run/Stop
The computer is placed in Run mode by driving XRDX, S-100 line \#3, high. The computer is stopped by driving XRDY low. The pun signal, Sm 100 line 471, indicates the state of the Run/Stop flip ilop output, 030 p9. Run is set high in Run mode.

Sequence of Events
From stop to Run mode

1) The Run/Stop switch, S21, is raised, grounding 030 p10. 030 $\mathrm{p} 9>0$, $\mathrm{U} 16 \mathrm{p} 7>1$, $\mathrm{T} 5 \mathrm{p} 13>0$, 026 p 13 (XRDY) >1. This sequence will occur if a breakpoint is not being requested, i.e. U5 p9, 10, 11, 12 all high. The Run signal is also used to disable some of the front panel functions in Run mode.

Fron Run to Stop mode
The Run/Stop flip flop is set to the Stop state in two ways, a and b :
a) The $\overline{\text { Power }} \overline{\mathrm{On}} \overline{\mathrm{Clear}}, \overline{\mathrm{POC}}$, signal on Sm 100 line 䨽 99 will set the flip flop when $\overline{P O C}$ goes low. 030 p12>0.
b) When the Run/Stop switch, S21, is lowered to the Stop position and the $S-100$ signals $M 1, ~ P S Y M C$, and 01 are high indicating the start of an instruction fetch cycle. 09
p6>0.
Both a and b start the same sequence: $\mathbf{u 3 0} \mathrm{p} 9>1$, $016 \mathrm{p} 7>0$, $05 \mathrm{p} 13>1, \mathrm{U} 26 \mathrm{p} 13$ $(\overline{X R D Y})>1$.

Single Step
This function consists of the processor executing one instruction. Single Step is only enabled during Stop mode. In Stop mode, the processor does not produce PSYNC pulses and therefore the U31 debounce one-shot which is triggered by PSYNC has timed out, U31 p10>0.

Sequence of Events

1) The Single/Siow Step switch, S18, is lowered to the Single Step position. Capacitor C3. which has been discharged by resistor R2, Erounds 025 p 5 ; U25 $\mathrm{p} 6>0$, U26 p13 ($\overline{\mathrm{XRDY}})>1$. When the processor senses that $\overline{X R D Y}$ is high, it finishes executing the cycle in which it had been stopped and then starts to execute the next cycle.
2) At the start of the next cycle, the processor generates a PSYNC pulse. The PSYNC pulse triggers the debounce one-shot driving U31 p10 high; U25 p6>1, U26 p13 ($\overline{\mathrm{XRDY}})>0$. $\overline{\mathrm{XRDY}}$ going low stops the processor. Another single step cannot occur until the debounce one-shot times out after about 1 msec. The processor is stopped in the middle of the "next" cycle.
3) Capacitor C3 is charged to a logic 1 by the resistor connected to U25 p5.
4) The debounce one-shot times out, U31 p10>0.
5) The 518 switch opens.
6) $C 3$ is discharged to ground by R2. The circuitry has returned to its initial conditions.

Slow Step
This function consists of continuous single step functions. The time period between single steps is determined by the period of the debounce one-shot. Slow Step is the same as Single Step except for:
a) U25 p5 is continuously grounded when S 18 is raised. Thus whenever the debounce one-shot times out a Single step starts.
b) The debounce one-shot timing resistor, R6, is switched out of the circuit by reverse biasing diode $D 1$. This leaves the much larger variable resistor, R9, to determine the onemshot's time constant. In Slow step mode, the one-shotis period can be varied from approximately 1 msec to 5 sec.

Examine Next

This function consists of the processor executing one No Operation, NOP, instruction. The Computer must be in Stop mode.

Sequence of Events

1) The Examine/Examine Next switch, S16, is lowered, capacitor C 3 grounds U28 p9. U28>p8 0, U30 p7>0, U9 p8>1. U27 p7>0.

At this point, the signal splits into three paths a, b, and c :
a) U26 $\mathrm{p} 6>1, \mathrm{U} 17 \mathrm{p} 6$ (Single $\overline{\text { Step }})>0$. When Single $\overline{\text { Step }}, \mathrm{SS}$, S-100 line ${ }^{H} 21$ goes low, the CPU board"s input data buffers are disabled. This allows the front panel data drivers to drive the bidirectional data bus without conflict.
b) U26 p13 ($\overline{\mathrm{XRDY}})>1$. When $\overline{\mathrm{XRDY}}, \mathrm{S}-100$ line $F 3$, goes high the processor will start to run.
c) $\mathrm{U} 24 \mathrm{p} 2>1, \mathrm{U} 24 \mathrm{p} 1>0$, $\mathrm{U} 25 \mathrm{p} 3>0$. U , outputs all go low when DBIN is high. U24 is normally a T4Lo4. This part provides long gate delays. The delay provides time for the SS signal to turn off the CPU board's data buffers before the front panel's data driver 08 is turned on.
2) The processor executes the NOP instruction and starts an instruction fetch, M1, cycle. At the start of the M1 cycle the processor produces a PSINC pulse. This triggers the debounce one-shot: U31 p9>0, U30 p7>1, U9 p8>0, U27 p7>1. The three paths return to their original conditions:
a) U26 $\mathrm{p} 6>0, \mathrm{U} 17 \mathrm{p} 6(\overline{\mathrm{SS}})>1$.
b) U26 p13 ($\overline{\mathrm{XRDY}})>0$, stopping the processor.
c) U25 p3>1, U8 outputis tristated. This removes the Nop enable signal. Note that the NOP is turned off faster than it is turned on because the signal does not have to pass thru the U24 inverters.
3) Capacitor $C 3$ is charged to a logic 1 by the resistor connected to U28 p9.
4) The debounce one-shot times out, u31 p9>1.
5) The Examine Next switch is opened.
6) C3 is discharged to ground by R2.

Deposit
To perform a Deposit, the front panel disables the CPU boardis data input buffers, drives the data bus and outputs a MWRITE pulse. Special attention has been given to avoiding data bus conflicts and to provide adequate data set-up and hoid times. The processor remains in stop mode during a Deposit.

Sequence of Eyents

1) The Deposit/Deposit Next switch, S17, is raised, C3 grounds U28 p13, U28 p11>0, and the debounce one-shot is triggered, U31 p10>1. This removes the overiding set input to the ilip flop and U30 p4>0. The signal splits into two paths, a and b.
a) U26 $\mathrm{p} 6>1$, U17 p 6 ($\overline{\text { Single }} \overline{\mathrm{Step}}, \overline{\mathrm{SS}}$) >0. The low $\overline{\mathrm{SS}}$ will disable the CPU board's input data drivers.
b) U24 p4>1, U24 p10>0, U25 p11>0. U24 is nomally a 74 L 04 . This part provides a relatively long gate delay. U24 and U25 are connected so that the falling edge of a signal is delayed by both $U 24$ and $U 25$, the rising edge is delayed only by U25. This two way delay allows the front panel data drivers to be turned on late and turned off early relative to $\overline{\mathrm{SS}}$.

The signal at U25 p11 splits into two paths, c and d.
c) U28 p3>0. This turns the 015 data bus drive on. The byte on the 50 - 57 switches is placed on the bidirectional data bus. This byte is output by the CPU board onto the $S-100$ data out bus.
d) The signal is further delayed by two low power inverters and then triggers the MWRITE one-shot that produces the kTRITE pulse. U24 p6>1, U24 p8>0, U31 p7>0, U28 p6>0, U25 p8>0, U16 p9 (MWRITE)>1. The MWRITE pulse is delayed so that the data set up time of the memory is met.
2) The MWRITE one-shot times out after approximately 0.1 msec. MWRITE>O.
3) Capacitor C3 is charged to a logic 1 by the resistor connected toU28 p13.
4) The debounce one-shot times out after approximately 1 msec . U31p10>0, this sets the flip flop, $\mathrm{U} 30 \mathrm{p} 4>1$. The signal splitsinto two paths, a and b.
a) $\mathrm{U} 26 \mathrm{p} 6>0, \mathrm{U} 17 \mathrm{p} 6(\overline{\mathrm{SS}})>1$.b) 425 p11>1. Note that there are no time delays due to 424 .The signal splits into two paths, c and do
c) U28 p3>1, $\mathbf{U 1 5}$ is tristated, removing the data byte from thedata bus.
d) The MWRITE one-shot has already timed out, this path does nothing.
5) The Deposit/Deposit Next switch is released.
6) Capacitor C3 is discharged to ground by resistor R2.
Deposit NextThe Deposit Next function consists of an Examine Next followed by aDeposit. Both RS flip flops that control the Deposit and the Examine Nextfunctions are triggered simultaneously, 630 p1\&5, when the Deposit Nextswitch is closed. The Deposit RS flip flop is disabled until the debounceflip flop is triggered, $U 31$ p10>1, and DBIN goes high. This delays theDeposit sequence until the Examine Next is completed. Refer to the Deposit,Examine Next, and the Deposit Next timing diagran for more detail.

With normal jumpering, the Examine function forces the processor to execute three cycles. Normally, the first cycle is an instruction fetch and the C3H jump instruction is placed on the bidirectional data bus. The second cycle is a memory read and the byte on the $S 0-57$ switches is input and interpreted as the low order jump address. The third cycle is a menory read and the byte on the $58-515$ switches is input and interpreted as the high order jump address. The Examine function is only enabled during a Stop mode.

Sequence of Events

1) The Examine/Examine Next switch, $S 16$, is raised; capacitor 03 grounds U30 p14, this resets the RS flip flop, U30 p13>0, U9 p8>1, 427 p7>0. This part of the Examine sequence is very similar to the Examine Next timing except that the common side of S27 is low in the Examine case. This places the byte on S27 on the data bus instead of the NOP. The signal splits into three paths, a, b, and c.
a) $026 \mathrm{p} 6>1, \mathrm{U} 17 \mathrm{p} 6$ (Single $\overline{\text { Step }})>0$. This disables the CPU board's input data buffers.
b) $026 \mathrm{p} 13(\overline{\mathrm{XRDY}})>1$. This starts the processor.
c) $024 \mathrm{p} 2>1, \mathrm{U} 24 \mathrm{p} 12>0$, $025 \mathrm{p} 3>0$. The 48 data driver is enabled, placing the C3H byte on the data bus. U 24 is used to delay the signal to $U 8$ so that the $\bar{S} \bar{S}$ signal has time to turn off the CPU board's data drivers.
2) The processor executes the C 3 H instruction and starts a memory read cycle. At the start of this cycle the processor outputs a PSYNC pulse. The PSYNC pulse triggers the debounce one-shot, U31 p9>0, setting the Examine RS flip flop, 330 p13>1. The PSYiC pulse also clocks the D flip flop, 329 p9>0. $\quad 330$ and $U 29$ act as shift register elements.

When $430 \mathrm{p} 13>1, \overline{S S}>1, \overline{X R D Y}>0$, and $U 8$ will be disabled. $429 \mathrm{p} 9>0$, however, will force $\overline{S S}>0$, $\overline{X R D Y}>1$, and enable the 415 data driver, placing $S 0$ - $S 7$ on the bidirectional data bus. Since $\overline{X R D Y}$ is still high the processor will remain running.
3) The processor executes the second cycle, a memory read, and starts to execute the third cycle, another memory read. At the start of this third cycle the processor outputs a PSYNC pulse. The PSYNC pulse clocks both D flip flops in U29. U29 p9>1 and U29 p5>0. The flip flops are acting as shift register elements.

When U29 $\mathrm{p} 9>1, \overline{S S}>1, \overline{\mathrm{XRDY}}>0$, and the U 15 data driver will be disabled. U29 p5>0, however, will force $\overline{S S}>0$, $\overline{X R D Y}>1$, and enable the 41 data driver, placing $S 8$ - S15 on the bidirectional data bus. Since $\overline{4 R D Y}$ is still high the processor will remain running.
4) The processor executes the third cycle, a memory read, and starts to execute the fourth cycle, an instruction fetch. At the stamt of this fourth cycle the processor outputs a PSYNC pulse. The PSYNC pulse clocks U29 and U29 p5>1. U29 p5>1 causes $\overline{S S}>1$, $\overline{X R D Y}>0$, and disables the $U 1$ data driver. Since XRDY>0, the computer stops during the instruction fetch cycle.
5) Capacitor $C 3$ is charged to a logic 1 by the resistor connected to U30 p14.
6) The debounce one-mhot times out after approximately 1 msec . U31 p9>1。
7) The Examine switch is released.
8) Capacitor C3 is discharged to ground by resistor R2.

Continuous Functions, CF

The CF switch grounds capacitor C3. When the Examine, Examine Next, Deposit, Deposit Next and Single Step switches are closed, a contimuous ground instead of a low pulse enables the respective function. Wheri the debounce one-shot times out, the function starts again. The timing is similar to the single occurence timing.

Continuous NOP, CN
The CN switch grounds U9 p11. This drives U9 p8>1, U27 p7>1. The signal splits into three paths, a, b, and c.
a) $026 \mathrm{p} 6>1, \mathrm{U} 17 \mathrm{p} 6(\overline{\mathrm{SS}})>0$.
b) $026 \mathrm{p} 13(\overline{\mathrm{XRDY}})>1$.
c) $424 \mathrm{p} 2>1, \mathrm{U} 24 \mathrm{p} 12>0$, $425 \mathrm{p} 3>0$. U8 output all go low when DBIN is high. This is interrupted as a NOP instruction. The llops are executed endessly.

Continuous Deposit, CD
The $C D$ function triggers a Deposit sequence approximately once every 1 msec.

The Deposit RS flip flop, U30 ph, is set by the debounce one-shot when its output, U31 p10, goes low. This terminates the Deposit sequence.

When the $C D$ switch is closed and 031 p10>0, U27 p14>1. This enables the output of 017 p8 and the 02 clock signal is fed to the onemshot trigger 431 p11 and the Deposit RS flip flop trigger, U28 p13 to U30 p1. This starts a new sequence.

Breakpoints
The breakpoint functions stop the computer when certain conditions are met, by driving XRDY low. The conditions address, data, status or T.P. H, must occur early enough to meet the wait set up time requirements of the processor being used. If the wait set up time is not met the computer will not stop. If the breakpoint conditions are late because of a long access time, then wait states can be added to possible breakpoint cycles. If the breakpoint condition does not occur in a $T 2$ or $T w$ state then the latched breakpoint or T.P. B can be used to stop the computer.

As an example, consider the sequence of events during an address breakpoint on input port number $F F$ while running the $E F$ PORT TEST PROGRAM.

The AD switch in switch pack $S 25$ is closed, $S 23$ is set to the IMP position, S19 is set to ADDR BREAK, and all S0 - $\$ 15$ switches are raised. The processor executes an ouT FF instruction; soUT>1, all address bits>1, U5 $\mathrm{p} 6>0$, $\mathrm{J} 19 \mathrm{p} 19>0$, U22 p19>0, $\mathrm{J} 5 \mathrm{p} 12>0$, U5 p13>1, U26 p13 (XRDY)>0. The computer will remain in this condition until $S 19$ or AD is opened or a front panel function: Examine, Examine Next, Single Step, Deposit, Deposit Next or Reset changes the breakpoint conditions.

Bus Stable

The Bus Stable signal goes high when the data or address bus contains valid information. The address bus is always valid during the DBIN and PWR strobes. The data bus is always valid during the $\overline{\mathrm{PWR}}$ strobe. The data bus does not have to be valid during all of DBIN. When the processor is inputting data from memory or an foput port, data will not be available until after the access time of the menory or port. Because an unknown number of wait states can be inserted into the DBIN period, the data bus should not be sampled until at least the end of the last wait state.

The Bus Stable signal is implemented in the following manner:
a) 013 p 5 is normally cleared low because DBIN is normally low.
b) $\overline{P W R}$ is nomally high. It is connected to the set input, U13 p4. When $\overline{P W R}>0$, 413 p5>1 because the set imput overrides the clear input. When $\overline{\mathrm{PWR}}>1$, the flip flop is inmediately cleared by DBIN and 013 p5>0.
c) When DBIN is high, U13 is neither set or cleared and will olock its D input, $U 13 \mathrm{p} 2$ (PRDY), to U 13 p 5 . The jumper $J 3$ selects the polarity of the clock because the different processors output either polarity. When PRDY is high U13 p5>1.
d) When C and B are connected in $J 6, ~ U 13$ p5 is used as the Bus Stable signal. Sometimes it is necessary to clip the beginning or end of the U13 p5 signal. For example, if the 280 refresh address can overlap the DBIN strobe, then the end of the BS signal should be clipped. If the memory access time is very long, then the beginning of the BS signal should be clipped. The clipped BS is used by jumpering A to B in $\sqrt{6}$. The type of clipping is determined by $J 2$. J2 also allows for different polarities of $\oint 2$.

Programmed Output Port
The front panel latches the contents of the bidirectional data bus when the loeical condtion
$\overline{\overline{P W R}}$, SOUT. (FF on AO - A7 address bits) $=$ FF Port Out
is met. 03 is clocked on the low to high transition or end of the above signal.

Programed Input or Sense Switches
The front panel places the byte on the $S 8-$ S15 switches onto the bidirectional data bus when the logical condition

DBIN.SINP. (FF on AO - AT address bits) = FF Port In
is met. The processor interprets the $S 8-515$ byte as data from the FF port.

REPAIR

The basic method used by the front panel to debug itself and the rest of the computer is to provide many functions, simple and complex, that indicate or identify faults in the computer circuitry. Sonetimes the front panel will very directly display an error, such as having both the SINP and SOUT LEDs on at the sane time. At other tices the error will be indicated by the failure of a front panel function to work properly. For example, after discovering that his disk system will not boot, the user finds that the Examine Next function will not work efther. This does not identify the problem, but it is much easier to debug Examine Next than a front panelless disk system. Experience has shown that most hardware faults that would cause a high level task to malfunction will also ause relatively simple front panel tests or functions to fail. The problem is to seleet the simplest test or function that will indicate or identify the error.

This method requires some technical ability from the user. An alternative front panel design would be an intelligent, self-contained "black box that. would exercise the system and flash an error message to the unsophisticated user. The "black box" front panel would be expected to operate normally even if the rest of the computer was totally broken.

This second method was rejected for several reasons:

1) The circuitry in the "black box" would be as complex as the rest of the computer, and would be as difficult to repair. In contrast, the InterSystens front panel has the powerful ability to incrementally break down and be repalred. The user is never left without an information. He can bootstrap the system by repairing the simple functions first and the complex last.
2) An intelligent front panel and an unsophisticated user is not as flexible as a simple front panel and a knowledgeable user. Especially when hardware development instead of repair work is being done.
3) The InterSystems front panel is also an instructional tool. Its very intimate association with the rest of the computer cirouitry leads the user to a deeper understanding of the computer hardware.

The following contains notes and recomended procedures for diagnosing hardware faults. The general theory is to find the simplest test or function that will not work or that will identify the fault. It is always preferable to display the fault statically, i.e. while the computer is stopped or being reset. The problem then reduces to tracing the fault back to an IC whose inputs and outputs are logically inconsistent.

A very useful technique is to isolate a questionable ic pin by bending the pin out of the IC socket.

If the problem cannot be displayed statically then a function like the Continuous NOP, CH, can be very useful. Using an oscilloscope, the timing relationships of signals can be checked. Because the computer is executing a relatively simple repetitive program, the wavefoms are relatively easy to display and understand.

If the computer is not working, first check the simple things:
Power supplies.

Alignment of $S-100$ cards in the connectors.

The front panel to CPU ribbon cable. Is it plugged and oriented properly?

Remove all of the boards in the system except for the front panel and the CPU board. Check the empty $100-p i n$ connectors for loose pieces of metal that may be shorting S-100 signals, testpoints and LEDs while the computer is being reset, stopped, run, and Continuous Hoped.

Signal Name	S-100 非	Reset	Stopped after R no memo	Run with no memory	Continuous NOP
$\overline{X R D Y}$	3	0	0	1	1
$\overline{S S}$	21	1	1	1	0
92	24	p	p	p	p
\$1	25	p	p	p	p
M1	44	0	1	p	p
SOUT	45	0	0	0	0
SINP	46	0	0	0	0
SMEMR	47	1	1	p	0
Clock	49	p	p	p	p
$\overline{\text { SSW }} \overline{\text { DSE }}$	53	1	1	1	1
MWRITE	68	0	0	p	0
RUN	71	0	0	1	0
PSYNC	76	0	0	p	p
$\overline{\text { PWR }}$	77	1	1	p	1
DBIN	78	0	1	p	p
SWO	97	1	1	p	1
Address LEDS	A0-A 15	All on	All off	All on A14, A15 ${ }^{\text {² }}$	All on $\mathrm{A} 14, \mathrm{~A} 15 *$
Data LEDs	D0-D7	All on	A11 on	All on	A11 on
Programmed F0-F7 Outout LEDs		All on	Al1 on	A11 on	All on
Status LEDs:					
M1		Off	On	Dim	Dim
MEMR		On	On	On	On
WO		On	On	On	On
INP		Off	Off	Ofe	Off
OUT		Off	Off	Ofi	Off
IN		Off	Off	Off	Off
HLDA		Off	Off	Off	Off
Run LED		Off	Off	On	Off
Wait LED		On	On	Off	Off

The above table only applies to an Ithaca Audio 280 processor. Some of the LED readings may differ because of differences in front panel jumpering.

If a fault is found, locate the source of the fault and fix it immediately. It is usually a mistake to go on to a more complicated test.

If you can't find anything wrong, test to see if the following front panel functions work properly. They are listed in order of complexity:

```
Single Step
```

Exanine Next
Deposit (look for MWRITE pulse)
Deposit Next (look for MWRITE pulse)
Examine

Use the Examine function to determine if any address lines are open or shorted.

Now place a memory board in the computer. A static memory is best for debugging. Check the front panel functions again. Deposit different patterns into the memory to determine if any data lines are open or shorted.

If everything still works, toggle in the FF PORT TEST PROGRAM. Starting at zero: DB, FF, D3, FF, C3, 00, 00. The FF PORT TEST PROGRRM was discussd in the CHECK OUT section.

If the FF PORT TEST PROGRAM runs, add more boards to the system. If the program fails after a board is added, Single Step through the program to find the instruction that is not being executed properly.

If the fully-loaded computer runs the FF PORT TEST PROGRAM, try to run one of the commercially available ROM based monitors. If this works but your high level application still does not, check to see if your appifcation uses features that the ROM and FF PORT TEST PROGRAM don't use, such as DMA or interrupts. Use the breakpoint functions to examine the operation of your application or write short test programs to test possible faults.

The preceding procedure and tests are intended only as an initial guide． The user should feel free to develop his own debugging techniques．

HOTES

Abstract

It is often helpful to remember that the CPU＂thinks＂that the front panel is memory．During an Examine sequence the CPU＇s status and control signals are for an instruction fetch and two memory reads．

Because the CPU＂thinks＂that the front panel is memory，if the CPU board has a wait state request switch for the liEMR cycle，then you can add a wait state to the Examine，Examine Next，Deposit Next，Continuous Nop，and Continuous Function functions．If one of these functions only wonks properly with the added wait state then check the timing very carefully， For an example，at 4 mHz ，if PSMC is delayed during an Examine Next sequence，then the XRDY signal，which is triggered on PSYNC，will not go low soon enough to stop the computer．The computer will execute another cycle． It is possible to use the onboard wait state generator，$U 10$ ，to add wait． states to every cycle．

If you can＇t get a system to work at 4 mHz ，try 2 mHz first．

The -16 V line is next to the $\overline{S S W} \mathrm{DSB}$ signal on $5-100$ line $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 53．The -16 V supply is usually lightly loaded and will bleed－down slowly when the power is turned off．If boards are removed soon after turning off the power，they can short $-16 V$ to SSW DSB and burn out the CPU board input or the front panel driver．This occurs often－if your front panel doesn＇t work，check SSW DSB．

Always use both the $C P U$ board and the front panel．Don＇t run the front panel alone．

In switch pack 525 ，only close one of the following four switches at a time： W1，W2．W3，S．

In switch pack S 26 ，only close one switch at a time．

FRONT PANEL PARTS LIST

PART NUMBER	$\underline{\mathrm{IC}}$	DESCRIPTION	MANUFACTURER
01	81 LS 95	Octal Buffer	National Semiconductox
42	74LS240		(NS)
U3	74LS273		
U4.	$74 \mathrm{LS10}$		
U5	8092	5-input NANDs	NS
136	74LS08		
07	TTD126	Diode pack	Texas Instruments (TI)
48	811596	Octal Inverter	NS
U9	74 LS 10		
410	$74 \mathrm{LS173}$		
011	74.500		
U12	$74 \mathrm{LS240}$		
113	$74 \mathrm{LS74}$		
U14	25 LS2521	Octal Comparator	Advanced Micro Devices
015	81LS95	Octal Buffer	NS (AMD)
016	74 LS 240		
U17	7403		
U18	7415240		
U19	25 LS 2521	Octal Comparator	AMD
U20	74 LS 240		
U21	74 LS 240		
U22	$25 \operatorname{LS} 2521$	Octal Comparator	AMD
023	742530		
U24	74L04	Low Power TTL	
U25	74LS32		
U26	8092	5-input NANDs	NS
027	74LS240		
U28	741508		
U29	741574		
U30	74 LS 279		
U31	96502	Schottky One-Shot	Fairchild

PART NUMBER	COMPONENT VALU	TYPE
$\mathrm{Cl}, \mathrm{C} 2$	$0.1 \mu \mathrm{f}$	80\%
C3	$0.01 \mu \mathrm{~F}$	20\%
C4-C18	O.1 $\mu \mathrm{E}$	80\%
619	$0.01 \mu \mathrm{f}$	20\%
C20, C21	0. $1 \mu \mathrm{~F}$	80\%
C 22	$47 \mu x$	80\%
C23	$2.2 \mu \mathrm{E}$	20\%
R1	330Ω	
R2	$220 \mathrm{~K} \Omega$	
R3	$1 K \Omega$	
R. 4	$1 \mathrm{~K} \Omega$	
R5	$4.7 \mathrm{k} \Omega$	
R6	$1 \mathrm{~K} \Omega$	
R7	$20 \mathrm{~K} \Omega$	
R8	$1.5 \mathrm{~K} \Omega$	
R9	2 M (trimpot	
URI	220Ω	DTP
UR2	220Ω	DIP
UR3	$4.7 \mathrm{~K} \Omega$	SIP
UR 4	$4.7 \mathrm{~K} \Omega$	STP
UR5	220Ω	DIP
UR6	$4.7 \mathrm{~K} \Omega$	SIP
UR 7	220Ω	DIP
UR8	220Ω	DTP
UR9	220Ω	DIP
UR10	$4.7 \mathrm{~K} \Omega$	STP
D1	TN4148	
Q1, Q2	7805	
48	LEDs	

PART NUMBER

S0-515
S16. 517
518
519
S20, S21
S22, 523, S24
S25
S26
527
S28

COMPONENT VALUE E TYPE

Address/Data Toggle	ON - ON	SPDT
Ex/ExNt, Dep/Dep Nt Toggle	(ON) - OFF - (ON)	SPDT
Single Step/Slow Step Toggle	(ON) - OFF - ON	DPDT
Breakpoint Toggle	ON - OFF - ON	DPDT
Run/Stop, Reset/Ext Clx Toggle	(ON) - OFF - (ON)	DPDT
P.C. mount Toggle	ON - OFP - ON	SPDT
Octal DIP Switch	ON - DFF	SPST
Quad DIP Switch	ON - OFF	OPST
Octal DIP Switch	ON - OFF	SPST
Prestbutton	Nommally open	

U7 is an optional part. It is a diode pack used to clip overvoltages on the ribbon cable. It is normally not needed. We don't ship the item with our mainframe. U7 can be purchased from Ithaca Intersystems. Please call or write for current pricing.

TTHACA JNTERSYSTEMS LIRTTED WARRANTY

RIJ. equipment manufactured by ITHACA INTERSYSTEMS shall be guaranteed against defects in materials and wormanship for a period of ninety (90) days from date of delivery to the Buyer by the seller, and the seller agrees to reparr or replace, at its sole option any part which proves to be defective and attributable to any defect in materials or workmanhip.
EXCEPT FOR THE WARRANTIES THAT THE GOODS ARE MADE IN A
WORRMAMLIKE MAMNER AHD IH ACCORDANCE WITH THE
SPECIFICATIOTS SUPPLIED, SELLER MARES FO FARRAMTY
EXPRESS OR IMPLIEO, AND ARY TIPLIED MRPRANTY OF
MERCHATTABIJITY OR FTHNESS EOR A PARTICULAE PURPOSE
WEICH EXCEEDS THE FOREGOTAG GARPAMTY IS hERRBY
DISCLATMED BX SELLER AXD EXCLUDED EROR AMY AGREEREMER

Buyer expressly maives its rights to any consequential damages loss or expense arising in connection with the use of or the inability to use its goods for any purpose whatsoever.

Mo marranty shall be applicable to any damages arising out of any act of the Buyer his employees, agents, patrons or other persons.

In the event that a unit proves to be defective, and after authorization by Seller, the defective part and/or unit, as authorized, must be securely packaged and returned Freight Prepaid by the Buyer to ITHACA ImTERSYSTEMS for repair. Upon receipt of the unit, ITHACA IMTRRSYSTElis will repair or replace, at its sole option the defective part or product and return such part/product Freight Prepaid to the Buyer.

The remedies set forth herein are exclusive and the liability of Seller to any contract or sale or anything done in connection therewith, whether in contract, in tort, under any warrantyp or othervise, shall nots except as expressly provided herein. exceed the price of the equipment or part on Which said liability is based.

This farranty is given solely to the original Buyer No employee or representative of Seller is authorized to change this warranty in any way or grant any other guaranty or warranty.

ATIDELIAA EMD EFIFATA
Frelimiriers Editiomy Ithacs Iruterssstems Fromt Farel Mamsel July 22: 1980

The followims material will De iricorporated into Euttion 1 of the fromt warsl marusl.

ATIENTA

Mifferent cFU Cerds

As indicated st various mapes irg the frort manel mamuelg stertirn at wase 3. jtem 3 : the marmal was written with the essumption thet it would be ofereted with the series I Ithece lnterssstems z-80 cerd (Ithace Aurio z-80 1010) in the latched mode (x.eng with FSYNC latchins stetuses: before revision $2+0$ of this earss the latoher mode was the suralied circuit imwlementetiont at revision 2,0 end abover an option is movided su thet the basmo is rumins in latomed mode when J3 is set to AE).

Oweration with other s-100 cfu oards is not onds possible but was amtioipatodi revertheless the timins diasrams end other technical informetion referemces the series I Z-go
 oweretiom between onc CFU cero end another aremot asmificsmt, Some woirtst

* TuFemdins on the CFU card operatins the front Frrel Feset switch uid rot recessarily froruce the results describeg in the front Fanel mamusi. Ir Fartioular: all of the ardress LEDS mas mot macesserile lisht. This mas be the cese with the Itheca trterssstems mFU-80 Z-80 CFU card〔fremuently shipmed mith the frort Fanel in en Tthecs Trtergsstems XFS-1 sestem) n dependins on whether the mFu-80 is set to the fulls-latoned or Fortian-3atohed moces

Operation of the areatroint circuitry on the front Fenel is aeferient or the fatticuler processor csole, Sometimes, at a mhts it mas be rececsary to ade ore or two wait stetes (et 92b) to set a relienle breatooint. Sometimes it may Fe recesserg to use the detrhed breakfoint mode. different rrocessors eroduce different timirs relationshies aetween various bus events. ard the breakfont facilits must be agiusted bo zcoommomate these differemoes.

* The front Farel Rus stable simpel mes be adussted in various wass bsee fase 26 and 40 of the marmal) to allow mare effective oferatiom with various rrocessors. The Eus Stable setum on Esse 26 for the "Tthace Audio z-80 $1010^{*} \mathrm{is} 2150$ apmorriste for the Itheca Ithace Interssstems MPU-8O.

EFFiATA

Losic state inart on fase 43

Wht 3 Series T $Z-80$ operetins in the latched mode or a Geries II MfU-80 owerstins in the fully-latched mode (sH-1. (EC) the "Contimums NOF" column of the chert comteins two errors, which should he corrected to the followins:

Contimuous
NOF

M1
1
[NOT ${ }^{\text {RFN }}$]

GMEME
1
[NOT ${ }^{\text {™ }} \mathrm{A}$

FOC* and RESET*

The Series I Z - 80 card wroduces an active foc* every time a FESET* occurred on the sw100 bus. The front ranel run/stof cirouitrs wes resat bs Foc* rather then RESET*, The Series TI MFU-80 ahd other cardr thet follow the IEEE 696 5-100 stenderd ro rot Froduce FOE* at every FESET*, arid conseauentys usins the fromt Fanel Feset switoh would rot stow these $=$ rocessors.

Frort Fanels mamwfotured after Jurieg 1980 were modified $s 0$ that the rum/stor oircuitry was reset by FESET* rather than FOC* Gince FESET* is an untermineted lirev an FiC filter was arded to frovert roise from accidentally affectins the circuitrs.

Wait LEI

The S-100 WBit sismal is mot fert of the IEEE S-100 stamraros aro corseguembly the wait LED ore the frort parel dif mot proferle rewresent the status of TEEE S-100 swstems.

After funer 1980, Itheca lnterssstems front Fanels were marufactured with dA set to BC instegrs of ABy 50 that $T E E E$ S-100 sishels XFDY* OF FDY* will drive the front benel what LED. (Users with frort Farels from before this feriod Ghould rote thet JA mes me supelied with A commeted to B bs \% FC trace. this trace should be cut before ettemwtins to set J4 to BC.)

The TEEE 696 $9-100$ standard no lonser suFports the Furfstow ©ismel on lime mumber $71 . \quad$ Comseruentis, on carss merufectured efter Mes 1980 g this commection from the fromt Femel to the s-100 bus is cut (rear be 5-3, on the solder side of the ©erd).

The fromt warel actualls stofs the CFU os assertine XFIY* Furastow was astatus line. For cards thet use the Fun/stow line -- wheh as the Ithaca Intersustems Series I Z-80 cerd .-- the commetiom must be left iri flaceg or recommected if it hes been eut.

These two sismals accomblish similar tasks im on s-100 system (when activep either sishal disables deta inmut to the cFU 50 that the frort Farel cer drive the CFU data
 NDEF (rot Gefired), which alows its treritional use as 5 S* (Sjmeje stew) to me comtrnaed in sustems that use front warelss Lire grs howeverg which was SSwTSB* (Serse Switch aiseble) in gome prexteev ssstems is implemanted in the
 fromt Fshel suwworteg this gownsp* imwlementation urtil Masy 1980 g zfter which front paneds were manufertured sumportins
 Tisembe wno Simole Step fumetions.

This is accomplished be dutins the trace between jss a and A (riscommectirs B - - which is conmected to line 5 - - from ars driver) : mod iumperins - - with wire wrew wire -- J. J. A to 0 (commectins the outwut whicin used to drive dine 53 aidectlu to the driver of lime 21 girce both these drivers are oゃem collectorg ro adverse results occur).
 Thtersystems series X Z-90 cerd -- smould Meve this wrocerbre revereed.

